Genome Sequencing & Assembly Michael Schatz

March 30, 2015 CSHL Genome Access

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats

2. Whole Genome Alignment

I. Aligning & visualizing with MUMmer

3. Genome assemblers

- I. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for PacBio/ONT projects

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats

2. Whole Genome Alignment

I. Aligning & visualizing with MUMmer

3. Genome assemblers

- I. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for PacBio projects

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

The full tale

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage $\Phi X174 DNA$

F. Sanger, G. M. Air^{*}, B. G. Barrell, N. L. Brown⁺, A. R. Coulson, J. C. Fiddes, C. A. Hutchison III^{*}, P. M. Slocombe⁴ & M. Smith^{*} MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB: 2011, UK

A DNA sequence for the genume of bacteriphage 0X/T4	strand DNA of GNA has the same sequence as the mRNA and in
of approximately. 5375 meteriothes has been determined	certain conditions, will bird riboteness to that a protected
using the rapid and simple 'pha and minus' method. The	fragment can be isolated and sequenced. Only one major title
production of the proteins of the names responsible for the	as found By comparison with the atmins easil sequence data it
production of the proteins of the name known genes of the	initiation of the gene G proteint ¹⁰ (positions 21:062-2:413).
proteins and RNAs. Two pairs of genes are coded by the	At this stage sequencing techniques using primote synthesis
proteins and RNAs. Two pairs of genes are coded by the	with DNA polymerara wore being developed ¹¹ and Schort
proteins and RNAs. Two pairs of genes are coded by the	Part of the ribotene binding still. This was used to prime into
proteins and RNAs are appresent reading frames.	art of the ribotene binding still.
This genome of bacteriophage Φ X174 is a single-stranded,	the intercistronic region between the <i>F</i> and <i>G</i> genes, using DNA
invalue TDNA of approximately 5400 molecilides coding for	polymerase and ¹⁴ P-labelled triphosphase's. The ribo-substitu-
inne known proteins. The order of these genes, as determined by	tion technique ¹⁶ facilitated the sequence determination of the
genetic techniques ¹⁻¹ , is $A = C - D = E - E - E - E$. Genes F. G	labelled DNA produced. This decaracleotide-printed system
and H code for structural proteins of the virus capsid, and gene	was also used to develop the plus and minus method'. Suitable
I das defined by sequence work) codes for a small basic rortein	synthetic primers are, however, difficult to prepare and as

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Assembling a Genome

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

- **I.** Biological:
 - (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Illumina Sequencing by Synthesis

1. Prepare

Dense lawn of primers

Adapter DNA fragment

2. Attach

4. Image

5. Basecall

Typical sequencing coverage

Imagine raindrops on a sidewalk

We want to cover the entire sidewalk but each drop costs \$1

bin id

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key property:

• The standard deviation is the square root of the mean.

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

Repetitive regions

Repeat Type	Definition / Example	Prevalenc e
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -соріа, Ту3-дурѕу, Рао-BEL (~100 — 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Large plant genomes tend to be even worse
- Wheat: I6 Gbp; Pine: 24 Gbp

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

The fragment assembly string graph Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

10kbp

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC
 - Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
 - Place sequence to satisfy the mate constraints
 - Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called sequencing gaps
 - We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

N50 size

Def: 50% of the genome is in contigs as large as the N50 value


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats

2. Whole Genome Alignment

I. Aligning & visualizing with MUMmer

3. Genome assemblers

- I. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for PacBio projects

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy University of Maryland

• For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

 Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize *whole* genome alignments?
- With an alignment dot plot T $-N \times M$ matrix • Let i = position in genome A• Let j = position in genome B• Fill cell (i,j) if A_i shows similarity to B_j A A C
 - A perfect alignment between A and B would completely fill the positive diagonal

С

Т

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

http://mummer.sf.net/manual/ AlignmentTypes.pdf

Alignment of 2 strains of Y. pestis http://mummer.sourceforge.net/manual/

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Break

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 2. Whole Genome Alignment
 - I. Aligning & visualizing with MUMmer

3. Genome assemblers

- I. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for PacBio projects

Genome assembly with ALLPATHS-LG Iain MacCallum

How ALLPATHS-LG works

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	\geq 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

*See next slide.

**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number CN = 1)

II. Form neighborhood around each seed

and are extended by other unipaths

Genome assembly with the Celera Assembler

Assembly Complexity

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing Roberts, RJ, Carneiro, MO, Schatz, MC (2013) *Genome Biology*. 14:405

Long Read Sequencing Technology

Moleculo Sequencing

Clever library preparation technique to turn a short read sequencer into a quazi-long read sequencer

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

Oxford Nanopore MinION

- Thumb drive sized sequencer
 powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Long Read Sequencing Technology

Single Molecule Sequences

"Corrective Lens" for Sequencing

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

PacBio Assembly Algorithms

PacBioToCA

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

& ECTools				
a				
d				
e <i>R R'</i>				

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

< 5x

PacBio Coverage

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

Her2 amplified breast cancer

Breast cancer

- About 12% of women will develop breast cancer during their lifetimes
- ~230,000 new cases every year (US)
- ~40,000 deaths every year (US)

Statistics from American Cancer Society and Mayo Clinic.

Recurrence and metastasis from Gonzalez-Angulo, et al, 2009.

Her2+ breast cancer

- 20% of breast cancers
- 2-3X recurrence risk
- 5X metastasis risk

SK-BR-3

Most commonly used Her2-amplified breast cancer ce

⁽Davidson et al, 2000)

Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to *de novo* assemble the complete cell line genome with PacBio long reads

Improving SMRTcell Performance

PacBio read length distribution

Genome-wide alignment coverage

Genome-wide coverage averages around 54X Coverage per chromosome varies greatly as expected from previous karyotyping results

8 Mb

PacBio and Illumina coverage values are highly correlated but Illumina shows greater variance because of poorly mapping reads

Structural variant discovery with long reads

- **1. Alignment-based split read analysis: Efficient capture of most events** BWA-MEM + Lumpy
- 2. Local assembly of regions of interest: In-depth analysis with *base-pair precision* Localized HGAP + Celera Assembler + MUMmer
- **3. Whole genome assembly: In-depth analysis including** *novel sequences* DNAnexus-enabled version of Falcon

Total Assembly: 2.64GbpContig N50: 2.56 MbpMax Contig: 23.5Mbp

Green arrow indicates an inverted duplication.

False positive and missing Illumina calls due to mis-mapped reads (especially low complexity).

Confirmed both known gene fusions in this region

Confirmed both known gene fusions in this region

Joint coverage and breakpoint analysis to discover underlying events

Cancer lesion Reconstruction

By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions.

- 1. Healthy diploid genome
- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

SKBR3 Oncogene Analysis

Known missense mutation in p53: R175H

 Arg

 Reference
 ATCTGAGCAGCGCTCATGGTGGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT

 Illumina
 ATCTGAGCAGCGCTCATGGTGGGGGGCAGTGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT

 PacBio
 ATCTGAGCAGCGCTCATGGTGGGGGGCAGTGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT

 His
 His

Oncogene amplifications			ns	Known Gene fusions		Confirmed by PacBio reads?
Frł	hB2	≈20X		TATDN1	GSDMB	Yes
(H	er2/neu)			RARA	PKIA	Yes
MYC MET		≈27X ≈8X		ANKHD1	PCDH1	Yes
				CCDC85C	SETD3	Yes
				SUMF1	LRRFIP2	Yes
				WDR67 (TBC1D31)	ZNF704	Yes
Genetic		Lesion		DHX35	ITCH	Yes
	History	History Analysis		NFS1	PREX1	Yes *read-through transcription
	Unde	rway		CYTH1	EIF3H	Yes *nested inside 2 translocations

Her2+ Breast Cancer Reference Genome

Available today under the Toronto Agreement:

- Fastq & BAM files of aligned reads
- Interactive Coverage Analysis with BAM.IOBIO
- Whole genome assembly

Available soon

- Whole genome methylation analysis
- Full length cDNA transciptome analysis
- Comparison to single cell analysis of >100 individual cells

http://schatzlab.cshl.edu/data/skbr3/

What should we expect from an assembly?

The resurgence of reference quality genomes

Model only as good as the available references (esp. haploid sequences) Technologies are quickly improving, exciting new scaffolding technologies

Acknowledgements

Schatz Lab

Rahul Amin **Eric Biggers** Han Fang Tyler Gavin James Gurtowski Ke Jiang Hayan Lee 7ak Lemmon Shoshana Marcus Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan Fritz Sedlazeck **Rachel Sherman Greg Vurture Alejandro Wences**

<u>CSHL</u>

Hannon I ab

Gingeras Lab

Jackson Lab

Tossifov Lab

Lippman Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

Hicks Lab

Levy Lab

Lvon Lab

OICR

Karen Ng Timothy Beck Yogi Sundaravadanam John McPherson

NBACC Adam Phillippy Serge Koren

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

ALFRED P. SLOAN FOUNDATION

Thank you

http://schatzlab.cshl.edu @mike_schatz